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Ranking and Subset Selection Procedures for Exponential
Populations with Type-I and Type-I! Censored Data

by

Roger L. Berger and Jee Soo Kim

In this paper ranking and subset selection procedures for

exponential populations with respect to the largest location and

scale parameters are proposed. The data are assumed to be gene-

rated from Type-I and Type-I! censoring mechanisms. The selec-

tion procedure proposed for the largest scale parameter based on

Type-I! censored data is equivalent to Gupta's procedure for gama

populations. Two procedures proposed for the selection of the

largest location parameter under Type-! censoring and Type-lI

censoring are asymptotically equivalent..
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1. INTMUCTION

In this paper we investigate the problem of ranking and

selection for exponential populations with Type-I and Type-II

censored data. We consider both the indifference zone formula-

tion of Bechhofer (19S4) and the subset selection formulation

of Gupta (1956). To our knowledge, W. Huang and K. Huang (1980)

are the only researchers who have considered a selection problem

with incomplete data.

Censored or incomplete data arise in various situations such

as industrial life-testing, clinical trials, and biological experi-

ments. To motivate our discussion and to illustrate how incom-

plete data can arise, we present a particular situation from in-

dustrial life-testing. A batch of n electronic components (or

items) are placed on test at time 0, and the experiment terminates

at a pre-specified time T. The failure time of a component is

observable if it fails before time T. If a component still func-

tions at the closure of the experiment, its failure time is not

observable. The component is said to be censored at time T.

This type of time censoring is known as Type-I censoring. In

this life-testing experiment an experimenter might not know be-

forehand what value of the fixed censoring time T is appropriate,

so he may decide to continue the experiment until a pre-specified

number r, I < r S n, (or a fractiOn r, or a proportion 100at,

0 < a < 1) of the components have failed. Those components still

• .. .... ... .? , ' 1
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functioning at the time of the rth failure are called censored

observations. This type of failure censoring is known as Type-l1

censoring. Type-I and Type-I! censoring schemes have received

such attention in the statistical literature. See Bain (1978),

Barlow and Pr(schan (1966, 1967), Epstein and Sobel (1953), and

Mann et al. (1974).

We deal specifically with exponential distributions subject

to these two types of censoring mechanisms. Location parameter

problems are considered in Section 2 under Type-I censoring and in

Section 3 under Type-l1 censoring. In Section 4, ranking and se-

lection problems for scale parameters under Type-1l censoring are

discussed. Tables for implementing the new procedures are presented.

Throughout this paper, we use the word increasing in place of non-

decreasing and decreasing in place of nonincreasing.

ii
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2. SUBSET SELECTION FOR THE LARGEST LOCATION
PARAEE're ,AsED ON TYPE-I ,C RD DATA

Let '1 1- 2  . k denote k(k a 2) independent exponential

populations with density functions
e'C(x-)i)/e ,x X

f(x; A) { a ITX,
0, x < Xi, i 1 1, 2, ...,# k.

The scale parameter a is assumed known. The location parameter

Xi are the unknown parameters of interest. The parameter space

will be denoted by

A- (A_: x. (. A2. ... , 'k ,  i Z 0).

Let X l]  ]  ... 'A[k denote the ordered values of

Al A "2 " . k and let H M denote the unknown population asso-

ciated with A Our goal is the subset selection goal formu-

lated by Gupta (1956). This goal is to select a nonempty sub-

set of the k populations containing n(k) , the population associated

with the largest parameter x [k] A correct selection, denoted

CS, is the selection of any subset which contains n(k). The popu-

lation I (k) is referred to as the best population. If more than

one population could be classified as best, then one of these

is arbitrarily tagged as the best. This is done only for the

purpose of evaluating the infinum of the probability of a CS.
We shall propose a selection rule 9 which satisfies the P*-condition,

eI
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inf P_(cSIR,) 2 P', (2.1)
A-

w k < I is specified by the experimenter prior to

experimentation.

For i a 1, 2, ..., k let Xij. j - 1, 2, ..., n denote a

random sample of size n from Hi . The Xii might be the life

lengths of n items from population Hi placed on test at time 0.

The X are not themselves observable. Rather they are subjected

to Type-I censoring. That is, there is a specified time T 2 0

past which no observation will take place. Thus the observable

data are X!., i - 1, 2, ..., k, j - 1, 2, ..., n, where * min( T).1. =  ,ij .

Using the Factorization Theorem (Lehmann (1959), P. 49) it can

be shown that (YI, Y¥2& "." Yk) is a sufficient statistic in

this problem where

Y. a min(X .. ,X) min(min(Xil .. 'X) T).
S" i in "il' ' XinJ .

The selection procedure we propose depends on the data only through

the sufficient statistic (Y, Y2, ... # k) .

The observations Y¥I Y2, Y" ¥k are independent random

variables. The c.d.f. of Yi is G(yi; Am) where

if y 4 A

G(y; X) I - e n (y 'k)/e if A s y < T

if T S y

if A < T and

, o if y<T
G(y; A) I ifTsy
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if T < I. If A • T, G(y; X) is a mixed probability distribution

with an absolutely continuous part defined by the density

g e n (y-A)/6 for A S y < T and a discrete part con-

sisting of a point mass at T with probability en ( A)/O. If

T : A, G(y; A) is degenerate at T.

The selection procedure we propose is denoted by R1.

Procedure R: Select A, if and only if

¥ ljk Y ! -  (2.2)

where d a d(k, P* 8, T, n) a 0 is chosen so the P-condition

(2.1) is satisfied.

The method of computing d will be given. It will be shown

that d depends on n, T and e only through R and that 0 s d s n .

Table I gives values of d for k a 2(1)5, -I- .25(25)4.00 and

5(1)10 and P" u .75(.05).95 and .99.
If d ?-nTthen max ¥Y - !__5 0 with probability I for any I.

p Is k n

Thus PA(CSIR 1) I I for all A. For P* < 1, (2.1) can be achieved
nT

with a d <T.

We will now examine P (CSIR I) to determine how d should be

chosen to ensure the P*-cundition (2.1).

Theorem 2.1. Let d * -. Then

1 for T - Z A(k)

T-d k- n'd- V n-n/- )/
(CS (kU [R.e [ ]) -ne y-[k])/dy (2.3)PA [k] Jul

e-n(T-I-A[k])/8 for I/0k] T
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Proof. Let Yjbi 1, 2, ... , k be the observation from

If -W 9 , k]1 * P (Y (k) a T - ) P, (Y (k at ma Y

ifX[k)IT

PX(CS IR) I k~..*Y (k) ' Y~jyd. j-1, 2,... k-I, and Y(k) , T - d

F Y(k) z Y (j) j-1, 2, ... , k-i, and Y k T - d

aPj(Y~k d Yj) jul, 2,... k-i, and Y (T - d)

(k)c

k- G(y ? [)gy kld

* .(F~A[k)/

Substituting for G and g yields (2.3). I
For a fixed value of x~] the P (CSIR) in (2.3) decreases

if X [1)-' A[2)' ... " A k are all replaced by x [k]. Thus the

inf P,\(CSIR 1) takes place when x~1  X[A2] X* ] if

Aa(A, A, .,)and A - T - 7, then

Pj(C~R - I - -n (y~d-X)IO )k-I n O-n(y-x)/O d

I 1*dfl - e-n(T*-A)/q k -7 + d -~ ,*nTdA

A- .aa.
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Differentiation with respect to A. shows that PA (CSIR I1 is a

monotone increasing function of X for 0 !5 A < T - d.

Therefore, PX(CS1Rl I) is minimized by setting A - 0.

Theorem 2.2. For any value of d, 0 t d S nT

nT nT
in~xcS~l.d( lek 1 -d k T

An ) C ( - ~le kl) -*ee (2.4)

We have restricted d to be nonnegative so that a nonempty

subset is always selected. If d u 0, then from (2.4) we see that
1 nT -nT

latf PX(CSfR1)*~l-e e if P is less than this
A-

value, then d *0 can be used and strict inequality holds in (2.1).

This can be observed for some small P* values in Table 1. But if

P* is greater than or equal to this value, d can-be chosen so that

equality holds in (2.1) by equating the right side of (2.4) to P

and solving for d. Note that (2.4) depends on n, e, and T only

through F.Thus we have Theorem 2.3. nT nT

Theorem 2.3. For k z2,-T>0a d-"_k 0 0)t ~P* I,
* ~~ an le

nT
if d a d(k, P -- n u where u is the solution of the polynomial

nT nT
k e

(1-u) +*kP u-ke (I (- e .0 (2.5)

nT

in the interval e- r u t 1, then the P*-condition (2.1) is satis-

fied with equality.

The values of d in Table I were computed by solving (2.5).

Let 0 *(0, 0, .. 0). since P 0(CSIR I)(the expression in (2.4))
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is a continuous strictly increasing function of d for 0 :g d :5n

a nTand P 0(CSIR 1) a I if d -~,(2.5) always has a unique solution

nT

ine u u9 1. As 6 m d-k, p* T d(k, P*, m)where

d(k. P', *)is the solution of

ed e -d k.P*, d z0. (2.6)

Equivalently d(k, P*,) -In u where u is the solution of

k
(1- U) *kPu- Iv0, o <u :5 .

The values of d(k, P*, .)are also listed in Table 1. For the

values of k and P* in Table 1,

ld(k, P% d(k, P. 10)1 .0001.

Finally, we note some reasonable properties of R in Theorem
I

2.4.

TheoremZ2.4. Fix T 0and e >0.

Mi I f T :g [A orA~l Ak T. I im PAC(CSIRl

(ii) (tMonotonicity) If x1 i Aj. P1 (select fuiRI) S PA(select a IR I).

(iii) if Al-1 c inimuut(kI T), lia EX(SIRl) I

where S is the size of the selected subset.
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Proof.

(i) If T A AJkl. Pkx(CSlRI) - I for every n. Suppose

A [k- A '[] T. Since Y *A) as.as n.

P X(CSIR) 1 P (Y ) ax Y() W as n

(ii) G(y; A) is stochastically increasing in Ai.e.,

G(y; A ) ig G(y; Ai) if X1 i! A J, This fact and Problem 11, page

112 of Lehmann (1959) yield

P A(select fuiRl) * 1 f IG(y + ; A3)dG(Y; A d

Tkd

S Ji fG(y + ; A )dG Cy; A)

3*j

aP (select n1l R1

k

By (i) and (ii) it suffices to show lim PA(Select 11(k ,)lRl) =0.

Since ii. d liun d(k, Po nT d(k. P% .,) Le * *d 0.
n-- n-m n-wo n
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Pk(select fl{k..l)IRl) - PxSY(kl) ' -~k dO

- P')~(k-) < minimum(T, k]) -

do,But lira Pi-(¥(-Y ' minimum(T, X[=] ) - 1.I since
__A(k- 1) [k] n

Y t < minimum(T, A' a.s. as n .- and do* 0 as(k-i1) [k-i] [k]~ n

n .6.W

If T is relatively small, then EX(SIRI) will be relatively

large, even for large n. More precisely, if A[i] , T 1 [i+I]

then lia EA(SIR I ) a k - i. Thus setting T small may result in
n-b- -

savings of experiment time, but may also result in the selection

of a large subset.

,'~ J
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3. SUBSET SELECTION FOR THE LARGEST LOCATION
PARA R BASED ON TYPE-I! CENSORED DATA

Assume that for i - 1, 2, ... , k, XUP j - 1, 2, ... , n de-

note a random sample of size n from Hi. Thus the X.. are defined

as in Section 2. Again, we are interested in selecting a subset

containing A[k]" In this section. we consider Type-II censored

data, rather than the Type-I censored data of Section 2.

Let ri, i = 1, ... , k be fixed integers satisfying 1 : ri ! n.

Let Xi[l] [2 ... Xi[n] denote the order statistics from

population ii. The data from population 1i is Type-Il censored

if the observations available from Hi are Xi[ll] ... , Xi[ri]. This

type of data arise if n items are placed on test simultaneously

and observation stops after the r. th failure.

Assume that Type-1l censored datasre available from each

H i - 1. 2, ..., k, I.e., the data are Xi[j], i a 1, 2, ..., k,

j 1 , 2, ..., ri. Using the Factorization Theorem (Lehmann, 19S9),

it can be shown that (X1 [1] X2 [11 , ..., Xk[l) is a sufficient

statistic for this problem. Thus the experimenter needs only ob-

serve the first failure time from each population. Alternatively,

(X 1 ], X2[l], ... , X[ 1 ]) may be thought of as the result of

Type-Il censoring with ri - I, i a 1 ... , k.

Ofosu (1974) proposed the following subset selection rule for

A based on (Xl[1J, X2[l], ... X[1]).

(k)Jl).X[l' X~l
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Procedure R: Select fi if and only if

X~ ~ - L-e 1 1, 2, ...
Xi[lJ .1 1x x 1

where d - d(k, P*) k 0 satisfies

I d -d k (.1
V ( - (I - e) P (3.1)

Ofosu showed that for P < 1, R2 satisfies the P*-condition

inf PeX (CSIR 2 ) ?. P"

if d is chosen as n (3.1). Condition (3.1) is the limiting

case (2.6) for the procedure R discussed in Section 2. This is

unsurprising since (Yi - X. )1 as T for fixed n and 0.

Some desirable properties of the rule R are listed below.

Properties (i) and (ii) were noted by Ofosu (1974). Properties

(iii) and (iv) can be proven in a similar fashion to Theorem 2.4.

(i) sup Ex(SIR 2) .kP.
A

(ii) If I i s AV. P(select ni IR2) :_ P._(select njIR2 ).

(iii) I A[k-l] < '[k]' lim PCCSIR2 ) 1.

(iv) If X[k-l] lii ESIR 1.

Property (i) is in marked contrast to R in the Type-I cen-

soring model. If A [ T, EA(SIRI) a k (all the populations are

surely selected). Berger (1979) showed that if a selection rule

Mitt
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satisfies (i) then the rule is minimax with respect to S and S',

the number of non-best populations selected. That is, R 2 satisfies

sup E 1:(SIR) 2 inf sup E,(SIR)
A V *A

and

sup E'X(SIR 2) v inf sup EX(S'IR)
A - v.P*A -

Where Vp*is the set of all rules which satisfy the P-condition.

In the Tyrpe-I censoring model of Section 2, no nonrandomized rule

can be Iminimx since u' T, i1 1, 2,... k) I if A T.
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4. RANKING AND SUBSET SELECTION FOR SCALE PARAMETERS
ASED ON TYPE-11 CENSORED DATA.

Let H1, 2' ., Ilk be k(k z 2) exponential populations with

density functions

r I-x/ei , if x > 0 and ei 0

f(x; ei ) a Ii (4.1)

0 otherwise, i a 1,2,..., k.

The ordered values of the unknown scale parameter Si are denoted by

0 D ] s e[2 ] < ... S O[k ] .  (4.2)

The unknown population associated with 0[i ] is denoted by n M)

It is assumed that there is no prior knowledge about the correct

pairing of the k populations and the ordered scale parameters [

In the context of the reliability theory and life-testing models

i is the mean life of an item whose life length is described by

an exponential distribution function. The population with the

parameter ei equal to e is called the best population. The goal
[k)

is to identify the best population, and also the t(l 5 t i k - 1)

best populations.

From each population Hit i u 1, 2, ... , k we take a sample
of n items. Let X X denote the order sta-

Xi~l] L12 inJ

tistics representing the failure times of the n items from popula-

tion ni. We consider Type-II censoring as in Section 3. Let r

be a fixed integer such that 1 1 r : n. Under Type-II censoring
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the first r failures from each population iI are to be observed.
i

Observation on 11, ceases with the observation of Xi r. The

(n - r) items whose failure times are not observable be-

yond the 'i [r) become censored observations. Thus, the length

of the time population IT. is observed is the random variable
I

Xi[r]. Type-Il censoring was first investigated by Epstein and

Sobel (1953).

Section 4.1 introduces a statistic known as the total time

on test (TFOT) statistic generated from Type-Il censoring. Some

of its well-known properties are stated in Section 4.1. Selec-

tion rules are proposed on the basis of the TrOT statistics.

4.1. Total Time on Test (TTOT) Statistics and Its Properties.

For the Type-Il censored sampling the likelihood function

of the first r failures, X i[ 1 , Xi[21, ... , Xi[r] from 1i is

given by

f (xi[l lxi[ 2 ,...,xi[J;i)- Ix ij l Cn')xi[r))]
(n-r)1B0 i ( I iJu nrxir)

for 0 1 Xi[l] ' xi[2]...(i[r

0, otherwise. (4.3)

The maximum likelihood estimate (MLE) ;i of 8i obtained by setting

d IL f 0 is

ii
S(4.4)
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where Zi =I i [a I (n - r)Xi [r]' which can be written as

r
Z I l(n 1-jl)(Xi~j] -x ) * (n - r)X , (4.S)

where Xi[o] = 0. Zi represents the total time spent on observing

n items undergoing life-testing until the rth failure from Iii

whether an item is censored or uncensored. Zi is called the 7TOT

statistic. We state some of the known properties of I," See,

for example, Epstein and Sobel (19S), Mann et at. (1974) and

Bain (1978).

Leam 4.4.1. eI defined in (4.4) has the following properties.

(i) ai is a complete and sufficient statistic for 0i.

(ii) 0i is the MLE of ei .

(iii) i is the UWVUE of .

(iv) Oi is a strongly consistent estimator of oi, if! is
n

fixed.

2rei 2
(v) - is distributed as X( a chi-square with 2r de-9 (2r;

grees of freedom.

(v) Zi = r i has a gamma distribution with shape parameter

r and scale parameter ei.

Remark 4.1.1. The distribution of Z is Independent of the sample

size n. The advantage of r failures out of a sample of n items
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(n > r) over r failures out of a sample of r items is in the

savings of time. The expected waiting time to observe the rth

failure in the sample of n, E(Xirr) " 1 ,i -' '- is less
Jul -- *

than the expected waiting time for all r failures in the sample

of r items.

Procedures based on Zi, equivalently on 8i, are proposed

with both formulations, indifference zone formulation and sub-

set selection formulation, in mind.

4.2. Indifference Zone Formulation.

Our goal is to select t, 1 S t s k - 1, populations asso-

ciated with the t largest scale parameters a B(0, " 0 k - t * 1,

k - t + 2, ... , k whenever the unknown parameter configuration

0, (0, 02, ... , Ok) is assumed to lie outside some subset of

the entire parameter space, denoted by e. The selection of the

subset containing exactly the t largest populations will be called

the correct selection (CS). The preference zone, 0(a) is defined

by

GO) a (0 e: *[kt]/O[k-tl ]  6) (4.6)

where 0 < 6 < I is fixed by the experimenter.

We shall propose a selection procedure R$ for which the pro-

bability of the correct selection satisfies the following inequality

P a.(CSIR 3) a p*, 1 k P• I for all 0 a 9(6), (4.7)

...
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where 6 and P *are specified in advance. This is the formula-

tion Of the selection problem presented by Bechhofer (195).

Let the ordered values of Zbe denoted by

Z ~z .. (4.8)
[1] ,[2] k

The procedure R 3 is defined as follows.

Procedure R:Select t populations corresponding to Zk]

z k-~p.. 'Z ktl (i.e. Select popula- (4.9)

tion 11 . for which Z. i aZ ktl)

The rule R3which depends on observations (censored or uncensored)

only through the TM0T statistics Z is equivalent to the procedure

based on the I4LE's Si.'

Having specified two quantities 8 and P* an experimenter is

now interested in determining the sm2 lest value of r to guarantee

the basic probability requirement (4.7). For this purpose the

infimum of Pi(CSIRS) must be obtained. Lot the TTOT statistic

from the population associated with 0 be denoted by Z .I(i] (i)
can be shown that

Pe(CSIR 3 )UP(maxZ () ...11Z (k )}minZ tl)*... .Z (k)) (4.10)

and that the least favorable configuration in 0(6) is given by

9 01 812 8 .-],0 k-tj*60 ,ktl'ande 8 et~[11 21 k-tI [k-i [kt~l [k-~lf~ a(k]*

Thus, we can obtain

inf - F te) dFV u (4.11)
0(6) - 3 0~~~u~ r r '
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where F Cu) X~r e'ox

Since Z I ... , Zkare independent gamma variables with

common known shape parameter r and unknown scale parameter 01,

the selection rule R 3 is closely related to the selection rule

studied by Dechhofer mud Sobel (1954) in their investigation of

the ranking variances of normal populations based on the sample

variances. Tables in Bechhofer and Sobel (1954) or Gibon. 01km

and Sobel (1977) can be used to determine the minimua r required

to satisfy (4.7).

We now study the behaviour of the PO(CS1R3 as 6 and ni vary.

Theorem 4.2.1. For any fixed r, I s r :9 U,

liii inf P 0(CSIR 3  1.
8.0 0 (8)

Proof. This follows readily from the expression (4.11),

k-t-l t
0(8) P,(CSIR3  ( k - t) F r(U) (I - Fr (au)) dFr (U)

r
Suppose that the experimenter specifies a fraction i? SaY

q(O Cq < 1), instead of fixing r. Then, as a consequence of

Lemma 4. 1. 1 (1y) we get:
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Theorem 4.2.2. Let u q be a fixed fraction. Then for any
n

.E e(8). lhm PoCesR 3) a 1.

4.3 Subset Selection Formulation

The approach we take in the present section is to select a

subset of k given populations which contain the population asso-

ciated with the largest scale parameter Ofkl* A correct selection

(CS) is defined as the selection of any subset which contains the

best population. We require that the probability of including

the best population in the subset selection to be at least a

pre-assigned fixed number P*, that is,

inf P (CSR) > P, wherel < P c 1. (4.12)

0 -. k

4.3.1 Selection Procedure R. and Its Properties

Based on the TrOT statistics Zi  =X i *j * (n - r)Xi[r],

i - 1, 2, ... , k, W. Huang and K. Huang (1980) proposed the follow-

ing procedure.

Procedure R4 : Select the population 1I, if and only if

Zi z cmax Zj (4.13)

where c is a positive constant, 0 < c < I, pro-assigned so as to

satisfy the P*-condition (4.12).

Since Zi has a gama distribution with the known shape para-

mrter r and the scale parameter O1 (Lema 4.1.1 (vi)), the expres-

sion for the inf P(CSIR4) and all the desirable properties of the

. , L. .



-22-

rule R4 are precisely the same as those of the rule proposed

by Gupta (1963). Gupta (1963) considered a problem of a selec-

tion and ranking procedure for k gana populations with respect

to the largest scale parameter when the shape parameter are

assumed to be known and all equal. He derived

inf P (CSIR 4) 
=  Fk ' udF*(u) (4.14)

e -1 r-1 x

where Fr (u) r) j0 xre x.

We note that the right-hand side of (4.14) is independent of the

sample size n. It depends only on r, the number of observed failure

times. For various values of k, r and P', the associated constants

c satisfying the P*-condition are tabulated in Gupta (1963).

As a possible question in designing experiments one may ask:

For a fixed value of the constant c, 0 < c < 1, what should the

amount of the observed failures in the data be so as to satisfy

the pre-assigned probability P* specified by the experimenter?

Monotonicity of the inf P (CSIR 4) will resolve this problem and

will give us a unique smallest integer r for which inf Pe(CSIR4) P'.

Theorem 4.3.1. For any given values of k, c and P* in the selec-

tion rule R

inf P (CSIR4) Fr' j (U)dFr(u)
9 - r c

where Fr (u) a .) tr-le-tdt, is strictly increasing in r > 1.
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Proof. Suppose that X is a random variable having the density

function gr(x) c cr exp[(l - C)Fr (x)1 for x j [0, 1] and r > 1

where F (1x) is the inverse function of the incomplete gamsa,
r--

Fr(u) .j~ 1~ * dy. Put BWx a log g~ (X) - log g Wx

for r2 > r II nd0 sx sl.

dB(x) . (1-c) AVx) where f (x) is a gamma density

d[P 4  ?2 1F'x1 F; I(x)] r

and A(x) - f r [ (x1)J - f (F- I(x)]. Alas (1970) shows that A~x)
11 r 2 r 2

is nonnegative for all x, x e [0, 11. This proves B(x) is in-

creasing in x for all c, which in turn implies g,(x) is a density

function having a monotone likelihood ratio in x. Hence,

E r (Xk-1) * I x k-1lgCx)dx is increasing in r by Lehmzann's lemma

(1959, page 74). But

E (Xkl1) F k- Fk()dO(u).I1

Suppose that the experimenter observes a fraction of failures.

Then the procedure R4 is a consistent procedure in a sense that

for a sufficiently large n. the probability of including the best

population in the subset selected approaches 1.

Term4.3.2 LetL-q 0 < q<l, be fixed. IfS 80
Thormiie. n (k-l1 (k]

then Ilim P9 (CS1 R4 )*1

Proof,. This is imediate from Lemma 4.1.1 (iv), because R4is

based on Z.or equivalently on Si1 defined in (4.4). 11
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Table 1. This table gives the necessary d-value required
for the procedure R4 .

P = .75

2T'k 3 4 5 W5

2 3 4
.25 .00001 .00002 .00003 .0000 .0000
.50 .0987 .1818 .2030 .2093 .2123
.75 .2428 .3847 .4297 .4477 .4623

1.00 .3642 .5681 .6405 .6736 .7123
1.25 .4616 .7309 .8342 .8851 .9623
1.50 .5360 .8711 1.0090 1.0805 1.2123
1.75 .5898 .9872 1.1628 1.2577 1.4623
2.00 .6268 1.0789 1.2934 1.4144 1.7123
2.25 .6514 1.1478 1.3996 1.5482 1.9623
2.50 .6672 1.1970 1.4820 1.6578 2.2123
2.75 .6772 1.2305 1.5426 1.7433 2.4623
3.00 .6834 1.2526 1.5851 1.8068 2.7123
3.25 .6872 1.2669 1.6137 1.8516 2.9623
3.50 .6895 1.2758 1.6324 1.8820 3.2123
3.75 .6909 1.2813 1.6442 1.9018 3.4623
4.00 .6918 1.2847 1.6517 1.9145 3.7123
5.00 .6930 1.2893 1.6619 1.9324 4.7123
6.00 .6931 1.2900 1.6633 1.9349 5.7123
7.00 .6931 1.2900 1.6635 1.9352 6.7123
8.00 .6931 1.2901 1.6636 1.9353 7.7123
9.00 .6931 1.2901 1.6636 1.9353 8.7123
10.00 .6931 1.2901 1.6636 1.9153 9.7123
w .6931 1.2901 1.6636 1.9353

1Actual inf P(CS RI) - .8033

2Actual inf P (CS R) .7824

3Actual inff P(CSI R1) .7794
4 Actual inf P(CS R1 ) a .7789

d * lnP ask+-

I[
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P* 80

nT 2 3 4 5

.25 .00001 .0222 .0261 .0267 .0269

.50 .1760 .2497 .2683 .2740 .2769
* 75 .3383 .4610 .4988 .5141 .S269

1.00 .4801 .6566 .7168 .7442 .7769
1.25 .5989 .8350 .9210 .9629 1.0269
1.50 .6939 .9938 1.1098 1.1687 1.2769
1.75 .7658 1.1305 1.2806 1.3595 1.5269
2.00 .8176 1.2435 1.4309 1.5329 1.7769
2.25 .8531 1.3325 1.5584 1.6862 2.0269
2.50 .8766 1.3989 1.6617 1.8169 2.2769
2.75 .8917 1.4462 1.7415 1.9237 2.5269
3.00 .9011 1.4783 1.8000 2.0067 2.7769
3.25 .9070 1.4994 1.8408 2.0680 3.0269
3.50 .9106 1.5129 1.8682 2.1111 3.2769
3.75 .9129 1.5214 1.8860 2.1402 3.5269
4.00 .9142 1.5266 1.8973 2.1591 3.7769
5.00 .9160 1.5338 1.9130 2.1864 4.7769
6.00 .9163 1.5347 1.9152 2.1902 5.7769
7.00 .9163 1.5349 1.9155 2.1908 6.7769
8.00 .9163 1.5349 1.9156 2.1909 7.7769
9.00 .9163 1.5349 1.9156 2.1909 8.7769
10.00 .9163 1.5349 1.9156 2.1909 9.7769
o .9163 1.5349 1.9156 2.1909 a

IActual inf P(CSIR) .8033
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P* .85

-k'\k 2 3 4 5 -

.25 .0586 .0831 .0867 .0873 .0875

.50 .2551 .31S1 .3302 .3350 .3375

.75 .4376 .5355 .5651 .5771 .5875
1.00 .6028 .7441 .7907 .8118 .8375
1.25 .7478 .9394 1.0060 1.0381 1.0875
1.50 .8702 1.1189 1.2095 1.2547 1.3375
1.75 .9687 1.2799 1.3988 1.4598 1.5875
2.00 1.0440 1.4196 1.5714 1.6512 1.8375
2.25 1.0986 1.5360 1.7243 1.8263 2.0875
2.50 1.1363 1.6285 1.8551 1.9822 2.3375
2.75 1.1614 1.6982 1.9621 2.1162 2.5875
3.00 1.1775 1.7481 2.0454 2.2267 2.8375
3.25 1.1877 1.7823 2.1070 2.3133 3.0875
3.50 1.1940 1.8048 2.1503 2.3778 3.3375
3.75 1.1979 1.8192 2.1795 2.4236 3.5875
4.00 1.2003 1.8283 2.1985 2.4545 3.8375
5.00 1.2035 1.8409 2.2258 2.5010 4.8375
6.00 1.2039 1.8426 2.2297 2.5079 5.8375
7.00 1.2040 1.8429 2.2302 2.5088 6.8375
8.00 1.2040 1.8429 2.2303 2.5089 7.8375
9.00 1.2040 1.8429 2.2303 2.5089 8.8375
10.00 1.2040 1.8429 2.2303 2.5090 9.8375
- 1.2040 1.8429 2.2303 2.5090

P* .90

2ilk 3 4 5

.25 .1219 .1410 .1440 .1445 .1446

.so .3359 .3785 .3892 .3927 .3946

.75 .5399 .6085 .6289 .6372 .6446
1.00 .7314 .8306 .8624 .8768 .8946
1.25 .9077 1.0437 1.0892 1.1109 1.1446
1.50 1.0656 1.2457 1.3079 1.3385 1.3946
1.75 1.2023 1.4342 1.5169 1.5584 1.6446
2.00 1.3158 1.6064 1.7140 1.7689 1.8946
2.25 1.4053 1.7594 1.8966 1.9679 2.1446
2.50 1.4724 1.8905 2.0617 2.1528 2.3946
2.75 1.5201 1.9989 2.2065 2.3206 2.6446
3.00 1.5525 2.0816 2.3285 2.4684 2.8946
3.25 1.5738 2.1435 2.4266 2.5938 3.1446
3.50 1.5874 2.1871 2.5016 2.6955 3.3946
3.75 1.5959 2.2165 2.5560 2.7737 3.6446
4.00 1.6012 2.2356 2.5935 2.8309 3.8946
S.00 1.6083 2.2629 2.6512 2.9254 4.9846
6.00 1.6093 2.2668 2.6598 2.9406 5.8946
7.00 1.6094 2.2674 2.6610 2.9427 6.8946
8.00 1.6094 2.2674 2.6612 2.9430 7.8946
9.00 1.6094 2.2674 2.6612 2.9430 8.8946
10.00 1.6094 2.2674 2.6612 2.9430 9.8946

- 1.6094 2.2674 2.6612 2.9430 -
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P* 95

• k 2 3 4 S -

.25 .1858 .1965 .1983 .1986 .1987
o50 .4177 .4401 .4457 .4476 .4487

.75 .6443 .6800 .6904 .6947 .6987
1.00 .8645 .9160 .9322 .939S .9487
1.25 1.0764 1.1474 1.1705 1.1815 1.1987
1.50 1.2777 1.3731 1.4049 1.4203 1.4487
1.75 1.4661 1.5918 1.6342 1.6552 1.6987
2.00 1.6385 1.8015 1.8575 1.8854 1.9487
2.25 1.7918 2.0000 2.0730 2.1097 2.1987
2.50 1.9234 2.1850 2.2787 2.3264 2.4487
2.75 2.0313 2.3530 2.4724 2.5338 2.6987
3.00 2.1156 2.5013 2.6512 2.7294 2.9487
3.25 2.1780 2.6273 2.8120 2.9105 3.1987
3.50 2.2218 2.7295 2.9520 3.0742 3.4487
3.75 2.2514 2.8082 3.0689 3.2174 3.6987
4.00 2.2706 2.8658 3.1620 3.3378 3.9487
5.00 2.2981 2.9610 3.3400 3.5977 4.9487
6.00 2.3020 2.9762 3.3729 3.6536 S.9487
7.00 2.3025 2.9783 3.3777 3.6619 6.9487
8.00 2.3026 2.9786 3.3783 3.6631 7.9487
9.00 2.3026 2.9786 3.3784 3.6632 8.9487
10.00 2.3026 2.9786 3.3784 3.6632 9.9487
- 2.3026 2.9786 3.3784 3.6632 -

P = .99

nT2 3 4 5

.25 .2372 .2394 .2398 .2399 .2399

.50 .4835 .4881 .4893 .4897 .4899

.75 .7288 .7361 .7382 .7391 .7399
1.00 .9728 .9833 .9866 .9881 .9899
1.25 1.2151 1.2296 1.2343 1.2365 1.2399
1.50 1.4552 1.4747 1.4811 1.4842 1.4899
1.75 1.6925 1.7184 1.7270 1.7312 1.7399
2.00 1.9262 1.9603 1.9717 1.9773 1.9899
2.25 2.1553 2.1999 2.2147 2.2221 2.2399
2.50 2.3785 2.4364 2.4558 2.4655 2.4899
2.75 2.5942 2.6692 2.6943 2.7069 2.7399
3.00 2.8005 2.8970 2.9295 2.9458 2.9899
3.25 2.9949 3.1187 3.1606 3.1816 3.2399
3.50 3.1746 3.3324 3.3862 3.4133 3.4899
3.75 3.3367 3.5362 3.6051 3.6399 3.7399
4.00 3.4780 3.7275 3.8153 3.8599 3.9899
5.00 3.8141 4.3101 4.5195 4.6326 4.9899
6.00 3.8970 4.S4S4 4.8902 S.1078 5.9899
7.00 3.9100 4.936 4.9880 S.2616 6.9899
8.00 3.9117 4.6007 S.0036 S.2888 7.9899
9.00 3.9120 4.6017 S.0058 S.2927 8.9899
10.00 3.9120 4.6017 5.0061 5.2932 9.9899
" 3.9120 4.6018 5.0062 5.2933

' " ... ..... "" - n 
'

. .. . . . - ,, .. . . . . ... ... ... . ' " L-tI, ,I,
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